54 research outputs found

    Spin dynamics of counterrotating Kitaev spirals via duality

    Get PDF
    Incommensurate spiral order is a common occurrence in frustrated magnetic insulators. Typically, all magnetic moments rotate uniformly, through the same wavevector. However the honeycomb iridates family Li2IrO3 shows an incommensurate order where spirals on neighboring sublattices are counter-rotating, giving each moment a different local environment. Theoretically describing its spin dynamics has remained a challenge: the Kitaev interactions proposed to stabilize this state, which arise from strong spin-orbit effects, induce magnon umklapp scattering processes in spin-wave theory. Here we propose an approach via a (Klein) duality transformation into a conventional spiral of a frustrated Heisenberg model, allowing a direct derivation of the dynamical structure factor. We analyze both Kitaev and Dzyaloshinskii-Moriya based models, both of which can stabilize counterrotating spirals, but with different spin dynamics, and we propose experimental tests to identify the origin of counterrotation.Comment: 4 pages, 3 figures; appendix 5 pages, 2 figure

    "Quasi-particle breakdown" in the quasi-one-dimensional Ising ferromagnet CoNb2_2O6_6

    Full text link
    We present experimental and theoretical evidence that an interesting quantum many-body effect -- quasi-particle breakdown -- occurs in the quasi-one-dimensional spin-1/2 Ising-like ferromagnet CoNb2_2O6_6 in its paramagnetic phase at high transverse field as a result of explicit breaking of spin inversion symmetry. We propose a quantum spin Hamiltonian capturing the essential one-dimensional physics of CoNb2_2O6_6 and determine the exchange parameters of this model by fitting the calculated single particle dispersion to the one observed experimentally in applied transverse magnetic fields. We present high-resolution inelastic neutron scattering measurements of the single particle dispersion which observe "anomalous broadening" effects over a narrow energy range at intermediate energies. We propose that this effect originates from the decay of the one particle mode into two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field away from the direction perpendicular to the Ising axis in the experiments, which allows for non-zero matrix elements for decay by breaking the Z2\mathbb{Z}_2 spin inversion symmetry of the Hamiltonian.Comment: v1: 15 pages, 10 figures. v2: 16 pages, 10 figures, minor changes, as accepted to PR

    Magnetic phase transitions in the two-dimensional frustrated quantum antiferromagnet Cs2CuCl4

    Full text link
    We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J'/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields

    Anomalous Excitation Spectra of Frustrated Quantum Antiferromagnets

    Get PDF
    We use series expansions to study the excitation spectra of spin-1/2 antiferromagnets on anisotropic triangular lattices. For the isotropic triangular lattice model (TLM) the high-energy spectra show several anomalous features that differ strongly from linear spin-wave theory (LSWT). Even in the Neel phase, the deviations from LSWT increase sharply with frustration, leading to roton-like minima at special wavevectors. We argue that these results can be interpreted naturally in a spinon language, and provide an explanation for the previously observed anomalous finite-temperature properties of the TLM. In the coupled-chains limit, quantum renormalizations strongly enhance the one-dimensionality of the spectra, in agreement with experiments on Cs_2CuCl_4.Comment: 4 pages, 5 figures. New Fig. 3 with higher-order series data, paper shortened, references updated, one added (Ref. 28), minor changes otherwise. Published versio

    Excitations of quantum Ising chain CoNb2O6 in low transverse field: quantitative description of bound states stabilized by off-diagonal exchange and applied field

    Full text link
    We present experimental and theoretical evidence of novel bound state formation in the low transverse field ordered phase of the quasi-one-dimensional Ising-like material CoNb2_2O6_6. High resolution single crystal inelastic neutron scattering measurements observe that small transverse fields lead to a breakup of the spectrum into three parts, each evolving very differently upon increasing field. We show that this can be naturally understood starting from the excitations of the ordered phase of the transverse field Ising model, domain wall quasiparticles (solitons). The transverse field and a staggered off-diagonal exchange create one-soliton hopping terms with opposite signs. This leads to a rich spectrum and a special field, when the strengths of the off-diagonal exchange and transverse field match, at which solitons become localized; the highest field investigated is very close to this special regime. We solve this case analytically and find three two-soliton continua, along with three novel bound states. We also present calculations using exact diagonalization of a recently refined Hamiltonian model for CoNb2_2O6_6 and using diagonalization of the two-soliton subspace, both of which provide a quantitative agreement with the observed spectrum. The theoretical two-soliton model qualitatively and quantitatively captures a variety of non-trivial features in the observed spectrum, providing insight into the underlying physics of bound state formation.Comment: 17 pages, 5 figure

    Spin dynamics of coupled spin ladders near quantum criticality in Ba2CuTeO6

    Full text link
    We report inelastic neutron scattering measurements of the magnetic excitations in Ba2CuTeO6, proposed by ab initio calculations to magnetically realize weakly coupled antiferromagnetic two-leg spin-1/2 ladders. Isolated ladders are expected to have a singlet ground state protected by a spin gap. Ba2CuTeO6 orders magnetically, but with a small Neel temperature relative to the exchange strength, suggesting that the interladder couplings are relatively small and only just able to stabilize magnetic order, placing Ba2CuTeO6 close in parameter space to the critical point separating the gapped phase and Neel order. Through comparison of the observed spin dynamics with linear spin wave theory and quantum Monte Carlo calculations, we propose values for all relevant intra- and interladder exchange parameters, which place the system on the ordered side of the phase diagram in proximity to the critical point. We also compare high field magnetization data with quantum Monte Carlo predictions for the proposed model of coupled ladders.Comment: 14 pages, 12 figure

    Excitation spectra and ground state properties of the layered spin-1/2 frustrated antiferromagnets Cs_2CuCl_4 and Cs_2CuBr_4

    Get PDF
    We use series expansion methods to study ground- and excited-state properties in the helically ordered phase of spin-1/2 frustrated antiferromagnets on an anisotropic triangular lattice. We calculate the ground state energy, ordering wavevector, sublattice magnetization and one-magnon excitation spectrum for parameters relevant to Cs_2CuCl_4 and Cs_2CuBr_4. Both materials are modeled in terms of a Heisenberg model with spatially anisotropic exchange constants; for Cs_2CuCl_4 we also take into account the additional Dzyaloshinskii-Moriya (DM) interaction. We compare our results for Cs_2CuCl_4 with unpolarized neutron scattering experiments and find good agreement. In particular, the large quantum renormalizations of the one-magnon dispersion are well accounted for in our analysis, and inclusion of the DM interaction brings the theoretical predictions for the ordering wavevector and the magnon dispersion closer to the experimental results.Comment: 10 pages, 8 figure
    • …
    corecore